Les ordinateurs classiques, basés sur les travaux d'Alan Turing, effectuent leurs calculs à l’aide de bits d’informations selon les règles de la physique classique. L’état élémentaire d’un circuit est soit 0 soit 1. Mais en utilisant des qubits, où l’état élémentaire d’un système quantique est à la fois 0 et 1, il est possible d’effectuer bien plus rapidement certains types de calculs. On sait déjà faire des ordinateurs quantiques mais leur capacité de calcul reste pour le moment très en dessous de celle de la plus modeste des calculatrices programmables de poche des années 1970.
La raison en est que des objets de grande taille, bien qu’ultimement soumis aux lois de la physique quantique gouvernant leurs atomes, se comportent comme des objets qui ne sont plus quantiques. C’est la raison pour laquelle, lors d’une expérience, le fameux chat de Schrödinger est toujours observé vivant ou mort, jamais vivant et mort. Intervient alors le phénomène dit de décohérence.
Si l’on veut se faire une vague idée du phénomène de décohérence et de son rôle limitant pour la construction d’un ordinateur quantique, on peut prendre comme analogie celle d’un château de cartes.
Pour réaliser un ordinateur quantique surpassant un ordinateur classique, il faut disposer d’un grand nombre de qubits. On peut les représenter comme les éléments d’un château de cartes. Plus il prend de la hauteur, plus il est instable. Quand il atteint quelques étages, un minuscule courant d’air ou une petite vibration de la table suffit pour que tout le château s’écroule. De façon générale donc, plus le château est grand, plus il a de risques de s’effondrer vite, à moins qu’on ne le place dans une chambre sous vide ou sur une table l’isolant des vibrations du sol par exemple.
L’entreprise est difficile et on doit généralement refroidir presque au zéro absolu les systèmes quantiques constitués de quelques atomes seulement pour les isoler suffisamment longtemps du bruit de fond ambiant généré par le reste de l’univers afin de pouvoir effectuer quelques timides calculs quantiques. Certains pensent même que l’entreprise est vouée à l'échec, qu'un ordinateur quantique écrasant par sa vitesse de calcul un superordinateur comme le Jaguar ne verra jamais le jour.
Certains chercheurs ne perdent pas espoir, comme ceux d’IBM. Il existe diverses voies de recherches qui peuvent laisser penser que l’obstacle sera un jour contourné, peut-être avec des ordinateurs quantiques topologiques. Le plus probable est qu’on arrivera à faire au moins des simulateurs quantiques intéressants.
Ce sont les pièges à ions qui permettent d'obtenir les plus longs temps de cohérence mais il n’est pas sûr que l’on puisse s’en servir pour réaliser des ordinateurs quantiques vraiment utilisables. L’idéal serait de disposer de composants électroniques bien conçus grâce auxquels ces engins deviendraient semblables à nos actuels ordinateurs portables. C’est pourquoi des recherches sont conduites en physique du solide pour obtenir des mémoires et des puces quantiques.
Depuis des années, les chercheurs se sont tournés vers des diamants et les amateurs de science-fiction ne manqueront pas de penser à la civilisation kryptonienne de Superman. L’idée est de manipuler à l’aide d’impulsions laser ou micro-ondes l’état de spin des électrons de certains noyaux dans des cristaux, notamment de diamant. Du fait d’interactions faibles dites hyperfines entre le spin de ces électrons et celui du noyau autour duquel ils sont liés, il est possible de transférer le qubit d’information enregistré de l’électron au noyau. Si ce noyau constitue un défaut dans un cristal presque pur constitué de noyaux différents, dépourvus de spin, donc sans interactions possibles capables de détruire l’information quantique stockée, celle-ci sera beaucoup plus résistante à la décohérence.
Les derniers avatars de ces approches ont été publiés dans deux articles de Science, montrant les progrès dans cette voie de recherche pour un mythique ordinateur quantique surpuissant qui fait rêver les tenants de la singularité technologique comme Ray Kurzweil et les membres de Russia 2045.
Des impuretés sous forme de phosphore 31 ont permis de stocker des qubits d’information dans un cristal presque pur de noyaux de silicium 28 pendant plus de 3 minutes. Mais il a fallu refroidir le cristal à 2 kelvins. En revanche, si le temps de résistance à la décohérence n’a duré que 1,4 seconde pour des noyaux de carbone 13 dans un cristal de diamant formé de noyaux de carbone 12 pour l’essentiel, la performance a été obtenue à température ambiante !
source : http://www.futura-sciences.com/fr/news/t/physique-1/d/ordinateurs-quantiques-la-voie-des-cristaux-de-diamants_39243/
Hier à 12:37 par Satanas
» La France en 2024
Mer 13 Nov - 22:16 par Satanas
» L'HISTOIRE QUI A TERRIFIÉ L'EST DE LA FRANCE
Lun 11 Nov - 19:29 par Schattenjäger
» Le cas Paul Bernardo
Lun 11 Nov - 18:09 par Satanas
» 11 Km de Profondeur Sous l’Océan : Ce Que Cachent les Abysses
Mer 6 Nov - 21:50 par Schattenjäger
» 5 THÉORIES SUR BOUDDHA
Mer 6 Nov - 15:11 par Satanas
» GILDAS BOURDAIS
Dim 3 Nov - 19:28 par Schattenjäger
» Lieux hantés d'Écosse : châteaux, légendes et malédictions.
Ven 1 Nov - 18:45 par Schattenjäger
» Roswell 75 ans /documentaire chaine W9
Jeu 31 Oct - 20:27 par Mulder26
» Les Incidents les plus Sombres de la TV (ft.@Feldup)
Jeu 31 Oct - 12:41 par Satanas
» L'étrange disparition de l'homme qui aurait construit une machine à voyager dans le temps
Mer 30 Oct - 22:16 par Schattenjäger
» SECRETS CACHÉS SOUS TERRE - "The Oldest View"
Mer 30 Oct - 20:56 par Schattenjäger
» L'Iceberg des Red Rooms : La plus grande enquête sur ce mystère d'internet
Mar 29 Oct - 23:14 par Schattenjäger
» 1/2 tonne: la quête mortelle des géants de la force
Jeu 24 Oct - 18:09 par Mulder26
» La véritable histoire de Belzébuth
Mer 23 Oct - 21:26 par anoy