Aurores polaires géantes : une banalité il y a 3,5 milliards d'années
Comme en témoignent des roches vieilles d’environ 3,45 milliards d’années, le champ magnétique de la Terre était alors deux fois plus faible qu’aujourd’hui. Face à un vent solaire cent fois plus important qu'à l'heure actuelle, cette faiblesse devait provoquer de gigantesques aurores polaires et surtout conduire à une érosion de l'atmosphère de la planète.
En Afrique du Sud se trouve une région mondialement célèbre dans le monde de la géologie. Son nom est Barberton. On y trouve des roches formées au début de l’archéen, entre 3,5 et 3,2 milliards d’années, au sein de ce que l’on appelle une « ceinture de roches vertes ». Il s’agit de restes métamorphisés d’une zone volcanique associés à des roches sédimentaires. Cette région, qui offre une fenêtre sur le passé de la Terre, est intensément étudiée depuis longtemps.
Un groupe de chercheurs, parmi lesquels figure John Tarduno, vient de faire parler les cristaux de quartz contenus dans des roches volcaniques de Barberton, et que l’on appelle des dacites. Ces cristaux de tailles millimétriques contiennent eux-mêmes des inclusions magnétiques de tailles nanométriques. Grâce à elles, on a pu remonter à l’intensité du champ magnétique de la Terre il y a environ 3,45 milliards d’années.
Cette performance a été accomplie par une science particulière, le paléomagnétisme, qui étudie le champ magnétique passé de la planète à l’aide de ses traces fossiles dans les roches. Elle a notamment conduit à la mise en évidence des inversions du champ magnétique de la planète, découverte fondamentale en géologie. En effet, ces inversions ont permis de démontrer la théorie de l’expansion des fonds océaniques et son corollaire, la dérive des continents. C’est en appliquant les méthodes modernes de cette science que les paléomagnéticiens ont découvert que le champ magnétique de la Terre était deux fois plus faible il y a environ 3,45 milliards d’années.
Quand notre planète perdait son atmosphère
Une telle valeur a plusieurs conséquences. Pour les comprendre, il faut savoir que les observations astrophysiques portant sur des étoiles comparables au Soleil et d'âges variés, ainsi que la théorie de l’évolution stellaire, impliquent que, bien que la luminosité du Soleil était plus faible d’environ 23% à cette époque, le souffle du vent solaire devait être probablement cent fois plus important.
Les calculs indiquent que la taille de la magnétosphère de la planète devait être elle aussi deux fois plus faible, s’étendant à probablement à moins de 5 rayons terrestres (elle s’étend aujourd’hui à 10,7 fois le rayon de la Terre). Le flux de particules solaires frappant notre planète devait donc être bien plus important. Il devait chaque jour égaler celui que l’on mesure aujourd’hui à l’occasion des tempêtes solaires majeures accompagnées d’électrons tueurs.
Les aurores polaires devaient être bien plus fréquentes et s’étendre sur des zones au moins trois fois plus vastes qu’aujourd’hui. On devait donc pouvoir les admirer à des latitudes aussi basses que celle de New York.
Ce n’est pas tout... La magnétosphère, en déviant en partie les particules du vent solaire, protége aussi l’atmosphère de l’action érosive de son souffle. Sur Mars par exemple, le refroidissement plus rapide de la planète a dû supprimer sa géodynamo depuis longtemps et la perte de sa magnétosphère a accéléré celle de son atmosphère. Au début de l’archéen, la Terre devait perdre elle aussi des quantités importantes de molécules d’eau ainsi que d’autres molécules volatiles.
En Afrique du Sud se trouve une région mondialement célèbre dans le monde de la géologie. Son nom est Barberton. On y trouve des roches formées au début de l’archéen, entre 3,5 et 3,2 milliards d’années, au sein de ce que l’on appelle une « ceinture de roches vertes ». Il s’agit de restes métamorphisés d’une zone volcanique associés à des roches sédimentaires. Cette région, qui offre une fenêtre sur le passé de la Terre, est intensément étudiée depuis longtemps.
Un groupe de chercheurs, parmi lesquels figure John Tarduno, vient de faire parler les cristaux de quartz contenus dans des roches volcaniques de Barberton, et que l’on appelle des dacites. Ces cristaux de tailles millimétriques contiennent eux-mêmes des inclusions magnétiques de tailles nanométriques. Grâce à elles, on a pu remonter à l’intensité du champ magnétique de la Terre il y a environ 3,45 milliards d’années.
Cette performance a été accomplie par une science particulière, le paléomagnétisme, qui étudie le champ magnétique passé de la planète à l’aide de ses traces fossiles dans les roches. Elle a notamment conduit à la mise en évidence des inversions du champ magnétique de la planète, découverte fondamentale en géologie. En effet, ces inversions ont permis de démontrer la théorie de l’expansion des fonds océaniques et son corollaire, la dérive des continents. C’est en appliquant les méthodes modernes de cette science que les paléomagnéticiens ont découvert que le champ magnétique de la Terre était deux fois plus faible il y a environ 3,45 milliards d’années.
Quand notre planète perdait son atmosphère
Une telle valeur a plusieurs conséquences. Pour les comprendre, il faut savoir que les observations astrophysiques portant sur des étoiles comparables au Soleil et d'âges variés, ainsi que la théorie de l’évolution stellaire, impliquent que, bien que la luminosité du Soleil était plus faible d’environ 23% à cette époque, le souffle du vent solaire devait être probablement cent fois plus important.
Les calculs indiquent que la taille de la magnétosphère de la planète devait être elle aussi deux fois plus faible, s’étendant à probablement à moins de 5 rayons terrestres (elle s’étend aujourd’hui à 10,7 fois le rayon de la Terre). Le flux de particules solaires frappant notre planète devait donc être bien plus important. Il devait chaque jour égaler celui que l’on mesure aujourd’hui à l’occasion des tempêtes solaires majeures accompagnées d’électrons tueurs.
Les aurores polaires devaient être bien plus fréquentes et s’étendre sur des zones au moins trois fois plus vastes qu’aujourd’hui. On devait donc pouvoir les admirer à des latitudes aussi basses que celle de New York.
Ce n’est pas tout... La magnétosphère, en déviant en partie les particules du vent solaire, protége aussi l’atmosphère de l’action érosive de son souffle. Sur Mars par exemple, le refroidissement plus rapide de la planète a dû supprimer sa géodynamo depuis longtemps et la perte de sa magnétosphère a accéléré celle de son atmosphère. Au début de l’archéen, la Terre devait perdre elle aussi des quantités importantes de molécules d’eau ainsi que d’autres molécules volatiles.
Une représentation d'artiste de la taille probable des aurores polaires
il y a presque 3,5 milliards d'années. Crédit : University of Rochester
Aujourd'hui à 16:04 par Invité
» Décés de Gildas Bourdais
Aujourd'hui à 14:10 par TrustNo1
» Une grotte mystérieuse...En réalité pas grand chose!
Hier à 12:37 par Satanas
» La France en 2024
Mer 13 Nov - 22:16 par Satanas
» L'HISTOIRE QUI A TERRIFIÉ L'EST DE LA FRANCE
Lun 11 Nov - 19:29 par Schattenjäger
» Le cas Paul Bernardo
Lun 11 Nov - 18:09 par Satanas
» 11 Km de Profondeur Sous l’Océan : Ce Que Cachent les Abysses
Mer 6 Nov - 21:50 par Schattenjäger
» 5 THÉORIES SUR BOUDDHA
Mer 6 Nov - 15:11 par Satanas
» Lieux hantés d'Écosse : châteaux, légendes et malédictions.
Ven 1 Nov - 18:45 par Schattenjäger
» Roswell 75 ans /documentaire chaine W9
Jeu 31 Oct - 20:27 par Mulder26
» Les Incidents les plus Sombres de la TV (ft.@Feldup)
Jeu 31 Oct - 12:41 par Satanas
» L'étrange disparition de l'homme qui aurait construit une machine à voyager dans le temps
Mer 30 Oct - 22:16 par Schattenjäger
» SECRETS CACHÉS SOUS TERRE - "The Oldest View"
Mer 30 Oct - 20:56 par Schattenjäger
» L'Iceberg des Red Rooms : La plus grande enquête sur ce mystère d'internet
Mar 29 Oct - 23:14 par Schattenjäger
» 1/2 tonne: la quête mortelle des géants de la force
Jeu 24 Oct - 18:09 par Mulder26